Polars (Python) – Big Data Essentials (100% Practical) - ANSNEW

Polars (Python) – Big Data Essentials (100% Practical)

Polars (Python) – Big Data Essentials (100% Practical) is a hands-on introduction to working with large datasets efficiently using the Polars library. This course focuses on real-world data processing rather than theory, helping learners understand how to load, clean, transform, and analyze big data at high speed. By using Polars’ lazy execution, parallel processing, and memory-efficient design, students learn how to handle datasets that are too large or too slow for traditional tools like pandas.

Polars Practical Examples

1) Install + import (always)

Polars runs in Rust and uses vectorized execution. Most operations are “expressions” and are extremely fast.
pip install polars
import polars as pl

# Optional: nicer printing for notebooks/console
pl.Config.set_tbl_rows(12)
pl.Config.set_tbl_cols(12)
pl.Config.set_fmt_str_lengths(120)

2) Read / write (CSV, Parquet) — the big-data way

For large files: prefer scan_csv / scan_parquet (lazy). Use read_* when the dataset comfortably fits in memory.

Read small/medium CSV (eager)

df = pl.read_csv("data.csv")
df.head()

Scan large CSV (lazy) + collect at the end

lf = pl.scan_csv("data.csv")  # LazyFrame (no full read yet)

result = (
    lf
    .select(["id", "department", "salary"])  # projection pushdown
    .filter(pl.col("salary") > 50_000)      # predicate pushdown
    .group_by("department")
    .agg(
        pl.len().alias("rows"),
        pl.col("salary").mean().alias("avg_salary"),
    )
    .sort("avg_salary", descending=True)
    .collect()  # finally execute
)

Schema control (critical for messy CSVs)

schema = {
    "id": pl.Int64,
    "department": pl.Utf8,
    "salary": pl.Float64,
    "date": pl.Utf8,  # parse later (more reliable)
}

lf = pl.scan_csv("data.csv", schema=schema, ignore_errors=True)

Parquet (best for big analytics + storage)

# Read/scan Parquet
dfp = pl.read_parquet("data.parquet")
lfp = pl.scan_parquet("data.parquet")

# Write Parquet (fast + compressed)
df.write_parquet("out.parquet")

Lazy → write without pulling all data into memory

(
    pl.scan_csv("big.csv")
    .select(["id", "department", "salary"])
    .filter(pl.col("salary") > 0)
    .sink_parquet("clean.parquet")  # writes directly
)

3) Inspect data (fast checks that save you hours)

df.shape
df.schema
df.null_count()
df.describe()
df.estimated_size("mb")
lf = pl.scan_csv("big.csv")
lf.fetch(5)  # small sample for debugging (safe)

4) Select / rename / cast (core everyday operations)

df.select(["name", "salary"])

# Regex selection
df.select(pl.col("^sales_.*$"))
df = df.rename({"dept": "department"}).with_columns(
    pl.col("salary").cast(pl.Float64),
    pl.col("id").cast(pl.Int64),
)

5) Filter (fast patterns)

df.filter(pl.col("salary") > 50_000)

df.filter(
    (pl.col("age") > 30) &
    (pl.col("department") == "IT")
)
df.filter(pl.col("department").is_in(["IT", "HR"]))
df.filter(pl.col("salary").is_between(40_000, 120_000))
df.filter(pl.col("name").str.contains("john", literal=False))

6) Create/modify columns + conditionals (ETL essentials)

df = df.with_columns(
    (pl.col("salary") * 0.10).alias("bonus"),
    (pl.col("salary") + pl.col("bonus")).alias("salary_plus_bonus"),
)
df = df.with_columns(
    pl.when(pl.col("salary") >= 100_000).then(pl.lit("high"))
     .when(pl.col("salary") >= 60_000).then(pl.lit("mid"))
     .otherwise(pl.lit("low"))
     .alias("salary_band")
)

7) group_by + aggregations (your analytics workhorse)

out = df.group_by("department").agg(
    pl.len().alias("rows"),
    pl.col("salary").mean().alias("avg_salary"),
    pl.col("salary").max().alias("max_salary"),
    pl.col("salary").quantile(0.5).alias("median_salary"),
).sort("avg_salary", descending=True)
out = df.group_by(["department", "salary_band"]).agg(
    pl.len().alias("rows"),
    pl.col("salary").sum().alias("total_salary"),
)

8) Window functions (ranking, percent-of-total, running totals)

df2 = df.with_columns(
    pl.col("salary").rank("dense", descending=True).over("department").alias("dept_rank")
)
df2 = df.with_columns(
    (pl.col("salary") / pl.col("salary").sum().over("department")).alias("pct_of_dept_total")
)

9) Joins (data engineering core)

For big joins: keep only needed columns on both sides first (select), and make join keys the right dtype.
df = df1.join(df2, on="id", how="inner")
df = df1.join(df2, on="id", how="left")
# keep rows in df1 that have a match in df2
df_keep = df1.join(df2.select("id"), on="id", how="semi")

# keep rows in df1 that do NOT have a match in df2
df_drop = df1.join(df2.select("id"), on="id", how="anti")
# df_trades: [symbol, ts, price]
# df_quotes: [symbol, ts, bid, ask]
df_asof = df_trades.join_asof(
    df_quotes,
    on="ts",
    by="symbol",
    strategy="backward"
)

10) Reshape data (pivot/melt/explode)

# columns: [date, department, metric]
pivoted = df.pivot(
    values="metric",
    index="date",
    columns="department",
    aggregate_function="sum",
)
long = df.melt(
    id_vars=["id", "date"],
    value_vars=["sales", "returns"],
    variable_name="metric",
    value_name="value",
)
df2 = df.with_columns(
    pl.col("tags").str.split(",").alias("tags")
).explode("tags")

11) Strings + dates + time series

df = df.with_columns(
    pl.col("name").str.strip_chars().str.to_uppercase().alias("name_clean"),
)
df = df.with_columns(
    pl.col("date").str.strptime(pl.Date, "%Y-%m-%d", strict=False).alias("date")
)
# requires a Date/Datetime column
out = df.group_by_dynamic(
    index_column="date",
    every="1d",
    by="department",
).agg(
    pl.col("salary").mean().alias("avg_salary"),
    pl.len().alias("rows"),
)

12) Nulls + duplicates (data quality basics)

df.fill_null(0)
df.drop_nulls()

# Fill with different values per column
df = df.with_columns(
    pl.col("salary").fill_null(0),
    pl.col("department").fill_null("UNKNOWN"),
)
df_unique = df.unique(subset=["id"], keep="first")

13) Lazy optimization + debugging

lf = (
    pl.scan_csv("big.csv")
    .select(["id", "department", "salary", "date"])
    .filter(pl.col("salary") > 0)
)

print(lf.explain(optimized=True))
result = lf.collect(streaming=True)

14) Real pipeline templates

schema = {
    "id": pl.Int64,
    "department": pl.Utf8,
    "salary": pl.Float64,
    "date": pl.Utf8,
}

(
    pl.scan_csv("big.csv", schema=schema, ignore_errors=True)
    .with_columns(
        pl.col("date").str.strptime(pl.Date, "%Y-%m-%d", strict=False).alias("date"),
        pl.col("department").str.strip_chars().str.to_uppercase().alias("department"),
        pl.col("salary").fill_null(0),
    )
    .filter(pl.col("salary") > 0)
    .select(["id", "department", "salary", "date"])
    .sink_parquet("clean.parquet")
)
out = (
    pl.scan_parquet("clean.parquet")
    .group_by_dynamic("date", every="1d", by="department")
    .agg(
        pl.len().alias("rows"),
        pl.col("salary").sum().alias("sum_salary"),
        pl.col("salary").mean().alias("avg_salary"),
    )
    .sort(["date", "department"])
    .collect()
)

out.write_csv("daily_kpis.csv")

15) Performance checklist

  • Use lazy: start with scan_csv/scan_parquet, end with collect() or sink_parquet().
  • Select early: keep only the columns you need (projection pushdown).
  • Filter early: push predicates before join/group_by.
  • Prefer Parquet: convert raw CSV to Parquet once, then analyze fast forever.
  • Avoid Python loops: use expressions and vectorized operations.
  • Debug safely: use lf.fetch(5) and lf.explain(optimized=True).

Download ANSNEW APP For Ads Free Expriences!
Yamin Hossain Shohan
Software Engineer, Researcher & Digital Creator

I'm a researcher, software engineer, and digital creator who uses technology and creativity to make useful tools and create interesting content.

Copyright Disclaimer

All the information is published in good faith and for general information purpose only. We does not make any warranties about the completeness, reliability and accuracy of this information. Any action you take upon the information you find on ansnew.com is strictly at your own risk. We will not be liable for any losses and/or damages in connection with the use of our website. Please read our complete disclaimer. And we do not hold any copyright over the article multimedia materials. All credit goes to the respective owner/creator of the pictures, audios and videos. We also accept no liability for any links to other URLs which appear on our website. If you are a copyright owner or an agent thereof, and you believe that any material available on our services infringes your copyrights, then you may submit a written copyright infringement notification using the contact details

(0) Comments on "Polars (Python) – Big Data Essentials (100% Practical)"

* Most comments will be posted if that are on-topic and not abusive
Back To Top