Polars (Python) – Big Data Essentials (100% Practical) is a hands-on introduction to working with large datasets efficiently using the Polars library. This course focuses on real-world data processing rather than theory, helping learners understand how to load, clean, transform, and analyze big data at high speed. By using Polars’ lazy execution, parallel processing, and memory-efficient design, students learn how to handle datasets that are too large or too slow for traditional tools like pandas.
![]() |
| Polars Practical Examples |
Table of contents
- 1) Install + import
- 2) Read / write (CSV, Parquet, scan_*)
- 3) Inspect + schema + memory
- 4) Select / rename / cast
- 5) Filter (fast patterns)
- 6) with_columns + conditionals
- 7) group_by + aggregations
- 8) Window functions (over)
- 9) Joins (incl. asof)
- 10) Reshape (pivot/melt/explode)
- 11) Strings + dates + time series
- 12) Nulls + dedupe
- 13) Lazy optimization + debugging
- 14) Real pipelines (templates)
- 15) Performance checklist
1) Install + import (always)
Polars runs in Rust and uses vectorized execution. Most operations are “expressions” and are extremely fast.
pip install polars
import polars as pl
# Optional: nicer printing for notebooks/console
pl.Config.set_tbl_rows(12)
pl.Config.set_tbl_cols(12)
pl.Config.set_fmt_str_lengths(120)
2) Read / write (CSV, Parquet) — the big-data way
For large files: prefer scan_csv / scan_parquet (lazy). Use read_* when the dataset comfortably fits in memory.
Read small/medium CSV (eager)
df = pl.read_csv("data.csv")
df.head()
Scan large CSV (lazy) + collect at the end
lf = pl.scan_csv("data.csv") # LazyFrame (no full read yet)
result = (
lf
.select(["id", "department", "salary"]) # projection pushdown
.filter(pl.col("salary") > 50_000) # predicate pushdown
.group_by("department")
.agg(
pl.len().alias("rows"),
pl.col("salary").mean().alias("avg_salary"),
)
.sort("avg_salary", descending=True)
.collect() # finally execute
)
Schema control (critical for messy CSVs)
schema = {
"id": pl.Int64,
"department": pl.Utf8,
"salary": pl.Float64,
"date": pl.Utf8, # parse later (more reliable)
}
lf = pl.scan_csv("data.csv", schema=schema, ignore_errors=True)
Parquet (best for big analytics + storage)
# Read/scan Parquet
dfp = pl.read_parquet("data.parquet")
lfp = pl.scan_parquet("data.parquet")
# Write Parquet (fast + compressed)
df.write_parquet("out.parquet")
Lazy → write without pulling all data into memory
(
pl.scan_csv("big.csv")
.select(["id", "department", "salary"])
.filter(pl.col("salary") > 0)
.sink_parquet("clean.parquet") # writes directly
)
3) Inspect data (fast checks that save you hours)
df.shape
df.schema
df.null_count()
df.describe()
df.estimated_size("mb")
lf = pl.scan_csv("big.csv")
lf.fetch(5) # small sample for debugging (safe)
4) Select / rename / cast (core everyday operations)
df.select(["name", "salary"])
# Regex selection
df.select(pl.col("^sales_.*$"))
df = df.rename({"dept": "department"}).with_columns(
pl.col("salary").cast(pl.Float64),
pl.col("id").cast(pl.Int64),
)
5) Filter (fast patterns)
df.filter(pl.col("salary") > 50_000)
df.filter(
(pl.col("age") > 30) &
(pl.col("department") == "IT")
)
df.filter(pl.col("department").is_in(["IT", "HR"]))
df.filter(pl.col("salary").is_between(40_000, 120_000))
df.filter(pl.col("name").str.contains("john", literal=False))
6) Create/modify columns + conditionals (ETL essentials)
df = df.with_columns(
(pl.col("salary") * 0.10).alias("bonus"),
(pl.col("salary") + pl.col("bonus")).alias("salary_plus_bonus"),
)
df = df.with_columns(
pl.when(pl.col("salary") >= 100_000).then(pl.lit("high"))
.when(pl.col("salary") >= 60_000).then(pl.lit("mid"))
.otherwise(pl.lit("low"))
.alias("salary_band")
)
7) group_by + aggregations (your analytics workhorse)
out = df.group_by("department").agg(
pl.len().alias("rows"),
pl.col("salary").mean().alias("avg_salary"),
pl.col("salary").max().alias("max_salary"),
pl.col("salary").quantile(0.5).alias("median_salary"),
).sort("avg_salary", descending=True)
out = df.group_by(["department", "salary_band"]).agg(
pl.len().alias("rows"),
pl.col("salary").sum().alias("total_salary"),
)
8) Window functions (ranking, percent-of-total, running totals)
df2 = df.with_columns(
pl.col("salary").rank("dense", descending=True).over("department").alias("dept_rank")
)
df2 = df.with_columns(
(pl.col("salary") / pl.col("salary").sum().over("department")).alias("pct_of_dept_total")
)
9) Joins (data engineering core)
For big joins: keep only needed columns on both sides first (select), and make join keys the right dtype.
df = df1.join(df2, on="id", how="inner")
df = df1.join(df2, on="id", how="left")
# keep rows in df1 that have a match in df2
df_keep = df1.join(df2.select("id"), on="id", how="semi")
# keep rows in df1 that do NOT have a match in df2
df_drop = df1.join(df2.select("id"), on="id", how="anti")
# df_trades: [symbol, ts, price]
# df_quotes: [symbol, ts, bid, ask]
df_asof = df_trades.join_asof(
df_quotes,
on="ts",
by="symbol",
strategy="backward"
)
10) Reshape data (pivot/melt/explode)
# columns: [date, department, metric]
pivoted = df.pivot(
values="metric",
index="date",
columns="department",
aggregate_function="sum",
)
long = df.melt(
id_vars=["id", "date"],
value_vars=["sales", "returns"],
variable_name="metric",
value_name="value",
)
df2 = df.with_columns(
pl.col("tags").str.split(",").alias("tags")
).explode("tags")
11) Strings + dates + time series
df = df.with_columns(
pl.col("name").str.strip_chars().str.to_uppercase().alias("name_clean"),
)
df = df.with_columns(
pl.col("date").str.strptime(pl.Date, "%Y-%m-%d", strict=False).alias("date")
)
# requires a Date/Datetime column
out = df.group_by_dynamic(
index_column="date",
every="1d",
by="department",
).agg(
pl.col("salary").mean().alias("avg_salary"),
pl.len().alias("rows"),
)
12) Nulls + duplicates (data quality basics)
df.fill_null(0)
df.drop_nulls()
# Fill with different values per column
df = df.with_columns(
pl.col("salary").fill_null(0),
pl.col("department").fill_null("UNKNOWN"),
)
df_unique = df.unique(subset=["id"], keep="first")
13) Lazy optimization + debugging
lf = (
pl.scan_csv("big.csv")
.select(["id", "department", "salary", "date"])
.filter(pl.col("salary") > 0)
)
print(lf.explain(optimized=True))
result = lf.collect(streaming=True)
14) Real pipeline templates
schema = {
"id": pl.Int64,
"department": pl.Utf8,
"salary": pl.Float64,
"date": pl.Utf8,
}
(
pl.scan_csv("big.csv", schema=schema, ignore_errors=True)
.with_columns(
pl.col("date").str.strptime(pl.Date, "%Y-%m-%d", strict=False).alias("date"),
pl.col("department").str.strip_chars().str.to_uppercase().alias("department"),
pl.col("salary").fill_null(0),
)
.filter(pl.col("salary") > 0)
.select(["id", "department", "salary", "date"])
.sink_parquet("clean.parquet")
)
out = (
pl.scan_parquet("clean.parquet")
.group_by_dynamic("date", every="1d", by="department")
.agg(
pl.len().alias("rows"),
pl.col("salary").sum().alias("sum_salary"),
pl.col("salary").mean().alias("avg_salary"),
)
.sort(["date", "department"])
.collect()
)
out.write_csv("daily_kpis.csv")
15) Performance checklist
- Use lazy: start with
scan_csv/scan_parquet, end withcollect()orsink_parquet(). - Select early: keep only the columns you need (projection pushdown).
- Filter early: push predicates before join/group_by.
- Prefer Parquet: convert raw CSV to Parquet once, then analyze fast forever.
- Avoid Python loops: use expressions and vectorized operations.
- Debug safely: use
lf.fetch(5)andlf.explain(optimized=True).
Download ANSNEW APP For Ads Free Expriences!




Comments from Facebook